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We discuss the behavior of powder materials in the case of high-temperature de- 
formation. We have ascertained rheological variables and the possible types of 
rheological curves for the case of unilateral compression. We propose methods 
for the determination of the rheological properties, based on experimental data. 

Under conditions of high-temperature deformation powder materials are capable of flow, 
experiencing in this case great irreversible strains. It is precisely this property that 
is exploited in a variety of engineering processes in the field of powder metallurgy where 
materials are subjected to heat treatment under pressure [i]. Macroscopic flow in a material 
occurs under various conditions of self-propagated high-temperature synthesis, and these in- 
clude the combustion of the original powder billets and the deformation of the products of 
combustion, which form to make up a hot porous mass [2]. 

Material that has been brought to the high-temperature state has been subjected to rela- 
tively little study in rheology, although familiarity with the properties of a hot porous 
mass is important from the standpoint of manufacturing which involves the use of SVS tech- 
nology and hot pressing. The development of efforts in this area is held back by the absence 
of specialized equipment and methods of measuring the properties of such materials. 

Among the specific unique features of the materials in the class which we are consider- 
ing here we can include the following: first of all, in the area of high temperatures a pow- 
der billet heated from without or by means of an internal source represents a porous bonded 
structural frame which is formed on heating by the interaction of individual particles. Se- 
condly, the existence of a large number of pores (up to 50%) and the change in their number 
during the deformation process defines the relationship between the shear resistance and com- 
pression of these materials relative to porosity. Thirdly, the material of the structural 
frame that is formed in the range of premelting temperatures exhibits considerable resistance 
to deformation. 

By using the concepts of highly viscous compressible fluids, as applicable to such ma- 
terials, we were able to study the quantitative relationships governing the flows of such 
materials in sintering processes and heat treatment under pressure [3, 4]. It is assumed 
here that the increased density of a porous body comes about as a consequence of the disappear- 
ance of pores from out of the volume of the material as a result of the fact that a certain 
amount of incompressible material is floating about in these pores, and it is this material 
that combines to form the framework of the porous body. 

The mechanical behavior of porous materials subjected to high temperatures can be de- 
scribed by a rheological equation of state having the following form [5]: 

~ j  = ~ (T, p, ~1, Ih)(e~j-- Su tr e~j/3) + ~ (Y, p, ~1, I~) 5~Je~i, ( 1 )  

i n  w h i c h  q and ~ a r e  t h e  s h e a r  and  vo lume  v i s c o s i t i e s  w h i c h  a r e  f u n c t i o n s  o f  t h e  t e m p e r a t u r e  
T, t h e  r e l a t i v e  d e n s i t y  p = 1 - ~,  t h e  m a g n i t u d e  o f  t h e  s h e a r  v i s c o s i t y  q l  o f  t h e  m a t e r i a l  
making up the framework, and finally, of the strain parameters. The latter are taken into 
consideration in the form of functions dependendent on three principal invariants of the 
strain rate tensor I k (k = i, 2, 3). The quantity Nl may also be a function of the strain 
parameters, as well as of the unique features of the material structure. 

Institute of Structural Macrokinetics, Academy of Sciences of the USSR. 
Inzhenerno-Fizicheskii Zhurnal, Vol. 57, No. 4, pp. 645-653, October, 1989. 
cle submitted May 5, 1988. 

Translated from 
Original arti- 

1232 0022-0841/89/5704-1232512.50 �9 1990 Plenum Publishing Corporation 



If we have no volumetric viscosity nor dependence on porosity, then Eq. (i) describes 
the rheological behavior of purely viscous incompressible fluids. The problems of the flow 
of such a class of materials have been thoroughly studied within the scope of theoretical 
and experimental rheology as it pertains to polymer materials [6]. For compressible highly 
viscous materials it is essential to develop methods to measure the fundamental rheological 
parameters and develop appropriate instrumentation. In the solution of these problems it 
is important to bear in mind the unique features of porous materials relative to the class 
of incompressible fluids: the presence of at least two viscosities and their dependence on 
the instantaneous porosity, the nonsteadiness of the compression process in the porous mass, 
etc. Consideration only of the above-enumerated features compels us once again to choose 
among the viscosimetric flows, rheological coordinates, and methods for the solution of the 
inverse problem. 

In the present paper we examine the simplest type of isothermal flow of a porous ma- 
terial of uniform density, i.e., unilaterial compression in a cylindrical shaping press, free 
of friction at the walls. This type of flow may be regarded as viscosimetric, since it pro- 
vides for the obtaining of information relative to the volumetric and shear viscosities of 
the material, it is described by relatively simple and easily solvable equations [3, 4, 7], 
and it permits experimental realization. The presence of only a nonzero component of the 
velocity vector v and only a single nonzero component of the strain-rate tensor 8v/Sz is 
characteristic. In this case, for the invariants of the cited tensor we have 

11 =-~--z  ' I~ = ; I3 
\ ~z ! t c3z J ' 

and any relationship to these invariants on the part of the shear or volumetric viscosity 
leads only to a relationship dependent on the velocity gradient 8v/Sz. The stressed state 
in this case is characterized by three nonzero normal components of the stress tensor: Oz, 
o r, o o �9 

By means of this most simple example we can trace the fundamental stages of the theore- 
tical analysis which examines the rheological behavior of porous materials: the selection 
of the viscosimetric and rheological variables, the determination of the basic types of re- 
lationships between these, the manner in which these relationships are affected by the rheo- 
logical properties of the material (the direct problem); the a priori determination of the 
unknown properties of the material, and the parameters governing the relationships of these 
properties to porosity, as for example, in terms of the experimentally measured viscosimetric 
variable (the inverse problem). 

The process of consolidation, which we are studying here, is described by the well- 
known [4, 7] system of equations: 

do _ av Ocrz 
dt P ~ ;  az =0; (2) 

. I OZ ~ 

I 3~ ~I ~v .__, (4) 
�9 / 

I Ov V ,~. 4 I Ov \ ~ p~ 
o, <5) 

t = 0: p = Po; .r- /=/- /o;  ( 6 )  

z = O :  v = O ;  

z=H: a , = - - ~  or v=--V. 

In contrast to [4, 7], where we find a study of the change in the relative density over 
time as a function of the applied load, here we will be interested in the relationship bet- 
ween the stresses oi, the velocity v, the specimen height H, and the velocity gradient 8v/Sz 
during the course of the experiment and the extent to which these are affected by the proper- 
ties of the material, and namely, p and ql, as well as the exponent n of non-Newtonian flow 
and the exponents m and ~ representing the nonlinearity of the relationship between the pro- 
perties and the relative density. 
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Fig. i. Procedure for the construction of rheological curves 
p(F) and T(F) on the basis of data derived from the viscosi- 
metric experiment. 

The analysis conducted in [7] makes it possible, in the case of a density that is uni- 
form through the volume, to regard all of the remaining characteristics of the flow to be 
uniform as well: components of the stress tensor Oz, Or, o8, the velocity v, and its gradi- 
ent. In this case, expressing all of the variables in terms of the boundary values, we can 
write the solution for the system of equations (2)-(6) in the form 

2 ( v V+, (8) - ~  " 

Selection of Rheolo~ical Variables. Relationships (7) and (8) suggest a set of four 
viscosimetric variables which must be measured experimentally: the guidepunch pressure N, 
the lateral pressure R, the specimen height H, all directly connected to the relative density 
p: pH = P0H0, and the rate of change V in this height. Considering that V = dH/dt, we can 
assume that the measured functions N(t), R(t), H(t) are adequate to determine the rheological 
properties. 

From the above-enumerated set of viscosimetric variables we then have to find the so- 
called rheological variables whose relationship one to the other can be used to calculate 
the properties and it would be sensitive to changes in the rheological parameters n, m, ~. 
The properties determined in this manner need not depend on the form of the stressed state, 
the deformation time, nor on the geometric dimensions of the measurement unit. For an in- 
compressible material these variables include the shearing stress and velocity, while the 
relationship between these (the curve of the flow) determines the shearing viscosity and its 
relationship to the deformation parameters [6]. 

For porous materials, as follows from Eqs. (3), (4), and (7) and (8), we can at least 
assume three rheological variables: hydrostatic pressure p, the maximum magnitude of the 
tangential stress ~, and the velocity gradient F, which in the case of unilateral compres- 
sion, such as we are considering here, represents the rate of change divv in the volume and 
the strain rate in the direction of the pressing axis, simultaneously: 
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p = ~ Ir '~ ---Icr, - -  r 1" = lVlHl. (9) 

Let us note that the rheological variables in (9), accurate to the constant factor, repre- 
sent the first two invariants of the stress tensor and the first invariant of the strain-rate 
tensor. 

The function ~(F) determines the shearing viscosity of the porous body, while p(F) de- 
fines the volumetric viscosity. The ratios ~/F and p/F, much like the assumptions: in the 
rheology of incompressible fluids, must be treated as definitions of an effective means of 
measuring the resistance in shear and multilateral compression, i.e., the effective values 
of the shearing and volume viscosities He and ~e" 

A study of such other relationships as, for example, N(H), N(V), R(H), V(H), is also 
of practical interest, since these are characteristics of a given method for the consolida- 
tion of a porous body. However, in the interpretation of these relationships it should be 
borne in mind that a change occurs along the time characteristic of the process which we are 
examining here, as well as of porosity, velocity, etc. Moreover, the characteristic which 
we are analyzing contains within it, in complex fashion, a combination of the volumetric and 
shearing viscosities of the material. 

Analysis of Rheological Curves. Since the viscosity of the porous material depends on 
its density, for purposes of determining said viscosity it is desirable to construct flow 
curves p(F) and ~(F), along which the density of the material would remain constant. It is 
possible to obtain such curves in a series of j experiments on the consolidation of this ma- 
terial, changing in each of these the initial value only for one of the parameters N, V, or 
H 0. In Fig. 1 we find a graphic illustration of the procedure for the construction of the 
rheologic curves for the case in which j = 3. 

Based on the H(t) curves we select some value for the specimen height H which corre- 
sponds in this particular case to a specific value for the relative density p (Fig. la), and 
at the appropriate instant of time tj (the time at which the chosen quantity H is attained 
in each of the experiments) from the curves V(t), N(t), R(t) we determine the quantities Vj, 
N., R. (Fig. ib-d), needed for the calculation of the rheologic parameters p, T, and F on 
t~e b~sis of (9). Thus we obtain the rheologic curves p(F) (Fig. le) or T(F) (Fig. if), 
along which the density is constant. 

Repeating this procedure for the other value of the billet height or for its relative 
density, we might obtain a family of rheologic curves with a different but unchanging density 
along each of these curves. Figure 2 shows possible types of rheologic curves p(F) and ~(F) 
for a viscous porous material at various values of the non-Newtonian index n (solid lines). 
The dashed lines show the evolutions of the curves of flow for non-Newtonian material (n = 
0) with an increase the selected value of the relative density @. The ratios ~/F and p/F, 
as was noted earlier, determine the quantities N and ~ and their relationship to density. 

In the consolidation method being considered here, only one of the stress-tensor com- 
ponents may serve in the role of one of the theological coordinates, and namely, the axial 
pressure, for example. The rheological curve N(F), in analogy with the earlier considered 
p(F) and T(F), can be obtained from a series of experiments based on the above-described pro- 
cedure. The qualitative form of the curves N(F) for various p and n does not differ from 
the curves p(F) and ~(F) shown in Fig. 2. However, the ratio N/F determines a certain ef- 
fective quantity, i.e., the extent of resistance in the case of unilateral compression. Ac- 
cording to (3), this quantity, in additive fashion, is made up of both of the viscosities. 
Nevertheless, if it is possible to choose the appropriate parameters of the exponential func- 
tion (5) for their relationship to the relative density, then on the basis of the function 
N(F) we can solve the inverse problem and determine the unknown properties. In prin- 
ciple, with these purposes in mind, the lateral pressure R is a suitable quantity, but it 
is a more complex problem to measure this quantity experimentally. 

The degree of nonlinearity of the extent to which the properties N and r are functions 
of density (m and ~) has little effect (even quantitatively) on the rheological curves. For 
a qualitative analysis of the effect of density on the properties and on the quantitative 
relationships of the flows in such materials we can limit ourselves to the simple :forms of 
the functions N(p) and ~(p), for example, by assuming that m = i; ~ = 0. Of fundamental 
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Fig. 2. Possible types of rheological curves for viscous 
porous material at various density values (dashed lines) and 
for the values of the non-Newtonian indices (solid line). 

Fig. 3. Viscosimetric characteristic N(F) derived from one 
experiment under conditions of various rheological behavior 
of material. 

Fig. 4. Representation of experimental data in rectification 
coordinates (12), (13). 

significance is the inverse proportionality of the volumetric viscosity and the porosity of 
the material. It is precisely in this manner that all of the unique features of the stress- 
strain states are related in approximation of the nonpore state. 

The non-Newtonian behavior of the material has a significant effect on the rheological 
curve of the material. Following [6], we will distinguish dilatational fluids whose vis- 
cosity increases as the velocity gradient V/H increases, from the pseudoplastic fluids whose 
viscosity diminishes with an increase in V/H. Among the former we include virtually all of 
the powder materials based on metals and alloys, while the latter include polymer-based fluids. 

Characteristic of the dilatational materials are monotonically increasing rheological 
curves p(F), ~(r), or N(F), and this applies to the entire range of possible density values 
(Fig. 2, curves i and 2). The geometrically smaller non-Newtonian degree brings the rheo- 
logical curve even closer to a straight line whose slope defines the corresponding viscosity 
value (Fig. 2, curve 2). 

The rheological curves of the pseudoplastic materials are more diverse, i.e., among these 
we encounter those that are nonmonotonic (Fig. 2, curves 3-5). This diversity is brought 
about by the fact that the increasing stress in the material is offset by the drop in viscosity 
as the velocity gradient increases. 

If the function q(F) is weak and rapidly saturated, then a bending point appears on the 
monotonically increasing rheological curve (Fig. 2, curve 3). When the viscosity values in 
the case of small and large velocity gradients differ significantly, two extrema appear on 
the rheological curve (Fig. 2, curve 4). However, if in the range of values for F, such as 
we are considering here, the relationship is not saturated, i.e., it diminishes monotonically, 
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the rheological curves p(F), z(F), or N(F) pass through a maximum (Fig. 2, curve 5). These 
quantitative relationships do not change when the selected values of the density fixed along 
the entire rheological curve change. Precise quantitative calculations of the coordinates 
of the extrema, of the bending points, and of the other characteristics of the rheological 
curves are possible if the form and parameters of the function q(F) are known. 

The function N(F), obtained in an experiment with a constant pressing speed, can also 
exhibit a nonmonotonic form (Fig. 3, curves i and 3). The nonmonotonicity in this case is 
due to the offsetting influence of two factors on the viscosity: its reduction because of 
the increase in V/H during the consolidation process and the increase that is brought about 
by the reduction in porosity. The effect of the latter always leads to an increase in N(F) 
at the end of the process, but the initial consolidation stages due to the first factor may 
occur with a reduction in the stresses acting within the material. 

In the consolidation process occurring in dilatational materials based on metals and 
alloys both of these factors lead to an increase in the effective viscosity, and the N(F) 
curves in the consolidation regime V = const always increase monotonically (Fig. 3, curve 2). 

The effect of the shearing viscosity of the incompressible porous mass base is always 
uniquely defined: the greater this quantity, the higher the force needed to achieve a given 
density. 

Solution of the Inverse Problem. To determine the properties of the material on the 
basis of experimental measurement results we will use the results of the analysis that we 
have carried out. The initial experimental material, as was noted earlier, may be repre- 
sented by the functions N(t), R(t), and H(t) measured in each of the experiments. Differen- 
tiation of the latter yields the function V(t). 

In the general case, determination of the rheoiogical properties from among the above- 
enumerated experimental curves is accomplished in several stages. Initially, within the range 
of variations in density we choose a set of values for Pi, for each of which, by means of 
the above-described procedure, we construct the rheological curves pi(F) and Ti(F). These 
make it possible to determine the non-Newtonian extent in dual rheological coordinates, as 
well as the effective value of the corresponding viscosity: 

lnpf = ln~  + n In I', 

In x~ = In rl~ + n In 1", 
(lO) 

where the number i refers the derived value of the effective viscosity to the corresponding 
density. In this way we determine the relationship of the properties to the density, i.e., 
q(p) and ~(p). If these can be described exponentially in the form of (5), then in the co- 
ordinates 

ln~ = l n ~ + m l n p ,  

In 3 (1 - -  p) ~/4 = In % + ~ M p ( 11  ) 

we can determine the parameters of these relationships. 

If we assume that the influence of the strain parameters on the viscosity of the materials 
can also be reduced to an exponential law analogous to the quantities q(p) and ~(p), then 
it is possible to determine the parameters of these exponential functions from only a single 
experiment on the consolidation of the porous material. A combination of Eqs. (7) and (8) 
gives us the following relationships: 

N -- R = 2~hp ~ 

(vl.+, 

each of which contains only three unknown parameters. The latter can be determined in the 
appropriate rectification coordinates: 
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Y , - - l n  N--R = l n 2 ~ + m l n p ,  (12) 
(VII-l) k+ ~ 

Y2 ~ In (N + 2R)(1 - -  p) = In 4~, + ~ In p. ( 13 ) 
(V/H) ~+' 

Varying the as yet unknown non-Newtonian index k, we can achieve a situation in which 
the experimental data are represented in the form of a straight line whose slope defines the 
parameters m or ~, with a truncated segment giving the quantity NI. A remarkably unique fea- 
ture of this proposed method is the rectification of the experimental curve only in the event 
of the correct selection of the non-Newtonian index k = n (Fig. 4, curve 2). If the chosen 
value of k is smaller than the true value (k < n), then in the coordinates of (12) and (13), 
in the region of large values for the relative density, the experimental curve will bend down- 
ward (curve i in Fig. 4), while if the selected value of k is greater than the true value 
(k > n), the experimental curve will bend upward (Fig. 4, curve 3). 

The described methods assume that in each experiment on unilateral compression of the 
porous material the axial N and the lateral R pressures are measured, as is the height of 
the specimen and the rate of change. However, it is possible to determine the properties 
of the material in the measurement of only two quantities: N(t) and H(t). In this case the 
velocity is determined through differentiation of the H(t) curve. The constructed N(F) curves 
for various density values in the inN-in F coordinates determine the non-Newtonian exponent 
n and the relationship between density and the defective resistance to unilateral compression, 
which in additive fashion is combined out of the shearing and volumetric visocisities of the 
porous bodies. 

If the material exhibits non-Newtonian properties, then it is impossible to divide the 
measured value of the level of resistance into volumetric and shearing viscosity such as in 
(5). However, in view of the limited influence exerted by the parameters m and ~ on the rheo- 
logical curve, with good approximation it is possible to determine both of the viscosities, 
assuming that m = ~. 

In the case of non-Newtonian behavior of the material, these parameters can be deter- 
mined independently of the structure of the rheological curve N(F). For this we have to use 
the solution of problem (2)-(6) for the kinetics of change in density. An extrapolation for- 
mula of this solution was proposed in [8], on the basis of which we can write the relationship 
between the experimentally measured quantities in the form [p = P0H0/H(t)] 

m I--oo p~--o~ (=--2)(=+I) s t 
1 - - p  - - P + P o  4 (p~_p~) = - - ~ ! ~ ( t ) d t .  

m 4 ( ~ - -  1) 4 ~  o 

When we present the experimental results in the rectification coordinates: 

Ys = (r 2)(~ + I) 1 3 t 
4 (~- i) + x ,  x = ~ N (0 d~, 

n, 4 (p' - p~) 

P --Po ~ Ys ----, In 1 -- Po P + Po + ~ (p -- Po), 
1 - - p  

(14) 

for the constants of the straight line Y3(X) we obtain the sought quantities nl, ~, and m, 
and for best rectification the quantity m varies in limits of 2.5 < m < 3.0. 

Each of the methods described above, that is both the complete and the shortened set 
of measured parameters, exhibit their own advantages and shortcomings. The measurement of 
the complete set of parameters is an experimentally more complex problem, but the results 
obtained in this manner are independent of the initial theoretical concepts. On the other 
hand, the rather general assumptions regarding the exponential form of the sought functions, 
making it possible to obtain the rectification coordinates, and the simplicity of the experi- 
mental execution make up the advantages of the second method. 

Let us take note of the fact that the first solution of the inverse problem of deter- 
mining the rheological properties of porous materials was the method involving the curtailed 
number of measured parameters. The analysis conducted in [4] of the various methods of con- 
solidating porous materials allowed us not only to estimate the shearing viscosity ~i of the 
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incompressible base, but also to determine the non-Newtonian index of the flow for a large 
group of solid alloys. A drawback of this study involves the fixed form of the relationship 
between the viscosities of the porous body and the relative density. In the present study 
it is included among the parameters to be determined. Let us also note that the method of 
determining the non-Newtonian index described in the present study, in combination with other 
rheological parameters, is suitable for arbitrary (including fractional) values of n and this 
sets it advantageously apart from the method covered in [4]. 

NOTATION 

oij , stress tensor component; eij, strain-rate tensor component; D, shearing viscosity 
of the porous material; ~, volumetric viscosity of the porous material; T, ~temperature; p, 
relative density of the porous material; H, porosity; ql, shearing viscosity of incompres- 
sible structural frame; Ik, strain rate tensor invariants; ~ij, Kronecker symbol; v, velo- 
city of the material in the direction of the pressing axis; z, coordinate along the press- 
ing axis; t, time; P0, relative density of the material at the initial instant of time; H0, 
original height of the billet; N, dyepunch pressure; V, dyepunch speed; n, non-Newtonian flow 
index; m, degree of nonlinearity for the shearing viscosity of the porous body as a function 
of density; a, the same, for the volumetric density; He, ~e, effective values of the shearing 
and volumetric viscosities. 
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